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Abstract: This study introduces a mathematical 
framework that incorporates fractional-order 
derivatives to investigate how effective 
protective interventions are in high-risk cholera 
populations. The model establishes disease-free 
and endemic thresholds, with stability analyzed 
using the Routh-Hurwitz criteria. A key insight is 
that determining the basic reproduction number 
provides deeper understanding of cholera 
transmission dynamics. 
Through normalized sensitivity analysis, the 
ingestion rate of Vibrio cholerae emerges as the 
most influential factor in transmission. 
Meanwhile, vaccination coverage and awareness 
of protective measures are recognized as crucial 
elements for cholera control and eradication. 
The model uses the Caputo-Fabrizio fractional-
order approach and is proven to be well-posed 
through the fixed-point theorem. Using the 
Laplace Adomian Decomposition Method 
(LADM), the results demonstrate that high 
vaccination rates and widespread adoption of 
protective measures among susceptible 
individuals in high-risk zones significantly 
reduce susceptibility, increase protected 
populations, and strengthen overall public health 
resilience against cholera. 
 
Keywords: LADM, Stability Analysis, vaccination 
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1. INTRODUCTION 

Cholera, caused by Vibrio cholerae, remains a 
significant global health threat, spreading through 
contaminated water and food sources and causing 
severe diarrhea, vomiting, and dehydration that 
can be fatal without prompt treatment [1-3]. 
Outbreaks predominantly occur in regions with 
poor sanitation and limited clean water access [4], 
with rural riverine communities being 
particularly vulnerable high-risk areas where 
cases continue to surge despite eradication 
efforts. Mathematical modeling has become 

instrumental in understanding cholera 
transmission dynamics, with studies identifying 
key risk factors and demonstrating the 
effectiveness of vaccination strategies [5] and 
prevention measures [6-10]. Recent advances in 
fractional calculus have enhanced disease 
modeling capabilities, with fractional-order 
operators like Riemann-Liouville [11], Caputo 
[12-15], and Caputo-Fabrizio [16,17] proving 
valuable for capturing complex transmission 
dynamics, as demonstrated by Baba et al.'s [18] 
fractional-order cholera model, Helikumi et al.'s 
[19] transmission model, and Rosa and Torres' 
[20] optimal control strategies. This study aims to 
analyze and evaluate the role of protective 
intervention measures, specifically educational 
programs and vaccinations, in cholera 
transmission control within high-risk riverine 
communities by presenting a novel seven-
compartment deterministic mathematical model 
that incorporates protective interventions to 
assess their effectiveness in reducing cholera 
transmission dynamics in vulnerable populations. 

1.1. Preliminary Concepts  

This section provides essential definitions of 
fractional calculus that are relevant to the current 
study. 
Definition 1: Let > @ � �' 0, , 0, 0,1 ,W K B B U� ! �
the CF fractional derivative operator is given by 
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where � � � � 10   NN U  is a normalize function. 
Definition 2: The CF integral of function � �tW  
withorder 10 �� U is 
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Definition 3:  
The Laplace transform of CF derivative of order

� �,1,0�U is: � �
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Definition 4: 
The Adomian polynomials nBBB ,....10 ,  used to 
decompose unknown function )(tr is given by 

nrrrrtr ��� 210)(   
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2. METHODOLOGY 

2.1. Laplace-Adomian decomposition Method 
(LADM) 

This subsection outlines the LADM method for 
solving a generalised fractional order differential 
equation given by: 
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Subject to: 
(0)iu j

j uY<  ,for , 1,2,3...j r  and

jj kk dd� U1   

In (1), ( )CF
t jD tU<  represents CF operator of j

numbers of unknown functions � �t< . The linear 

and nonlinear terms are represented by jl & jm  . 
Taking the Laplace transform of (1), 
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Imposing Definition 2 on (3), 
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By Definition (4), )(tWj can be decomposed as, 
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Nonlinear terms are given by, 

1
0

( ,... ) ( ) 1,2,...j j ji
s

m B t i n
f

 

< <   ¦            (5) 

Where ijB is the Adomian polynomial. 
Evaluating (3) with (4) and (5) yields   
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(6) 
The inverse Laplace transform of (6) yields

0,,, ,21 tjrrr jnjj and simplification of the 
preceding equation yields
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Which is the required recurrence relation.  

2.2. Model Formulation 

We categorised the population at time t into 
susceptible � �tS , vaccinated � �tV , protected � �tP
, infected � �tI , hospitalised � �tH , and recovered
� �tR . � �tB  Represents vibrio cholera 

concentration. 
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The susceptible population ( )S t  increases 
through birth rate /  and relapse from recovered 
individuals H , while decreasing due to natural 
mortality SP , vaccination rate of susceptible 

SI , protection through awareness SK , and force 
of infection � �c hI SE O E� at infected individuals 

IhE  and the rate at which people ingest vibrio 
cholera particles OEc . The vaccinated population 

( )V t  increases through vaccination of 
susceptible SI  and decreases due to natural 
mortality VP  and vaccine-induced recovery

.VV The protected population ( )P t  increases 
through direct protection of susceptible SK  and 
awareness-based protection during exposure

� �IAS hc EOE � , while decreasing due to natural 

mortality PP . The infected population � �I t  
increases through infection of unprotected 
susceptible � � � �ISA hc EOE ��1  and decreases 
due to natural mortality IP , hospitalization 1IJ , 
natural recovery 2IJ , and disease-induced 
mortality 1d I . The hospitalized population 

( )H t  increases through hospitalization from 
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infected 1IJ  and decreases due to natural 
mortality HP , treatment recovery HW , and 
disease-induced mortality 2d H . The recovered 
population ( )R t increases through recovery from 
vaccination VV , hospitalization HW , and natural 
recovery from infection 2IJ , while decreasing 
due to natural mortality RP  and relapse rate .RH
The vibrio cholerae concentration ( )B t  increases 
through bacterial shedding from infected 
individuals IT  and decreases through natural 
decay BG . Additionally, across all population 
groups, there exists a natural mortality rate P . 
Equation (7) form the proposed mathematical 
model of cholera disease. The nomenclature of 
model’s component are itemised in Table 1. 
Subject to: 

� � 10 mtS  , � � ,20 mtV  � � ,30 mtP  ,)( 40 mtI  

� � � � ,, 6050 mtRmtH   � � 70 mtB  . 

For simplicity of model terms, let 
HGI 0a , � �KIP �� 1a , � �PV � 2a
� �PJJ ��� 1213 da , � �PW �� 24 da , 

� �PH � 5a , � �IKP � 6a 02567 aaaaa ��� .  

Table 1: Variables, Parameters and their 
respective values 

Variables Description 
� �tS  Time count of 

susceptible population 
� �tV  Time count of  

vaccinated population 
� �tP  Time count of  

protected population 
� �tI  Time count of infected 

population 
� �tH  Time count of  

hospitalised 
population 

� �tR  Time count of 
recovered population 

� �tB  Time concentration of 
vibrio cholera density 

Parameters Description  
/  Recruitment rate 

cE  Human-to-human 
transmission rate 

hE  Vibrio ingestion rate 
from the environment 

O  Force of infection 

A  Adoption rate of 
protective measures of 
high risk individuals 

P  Mortality rate 
I  Vaccination rate 

among the susceptible 
population 

K  Progression rate of 
susceptible population  

H  Relapse rate 
V  Recovery rate among 

the vaccinated 
1J  Hospitalisation rate for 

infected individuals 
2J  Natural recovery rate 

1d  Infection-induced 
mortality rate among 
the infected 

W  Treatment rate 

2d  Infection-induced 
mortality rate among 
the hospitalised 

G  Death rate of vibrio 
cholera 

T   Influx rate of vibrio 
cholera  

 
2.3. Cholera Model Analysis 

In this section, we compute the two critical points 
of (7). This include calculating the disease free 
equilibrium and endemic equilibrium points. 

2.3.1. Disease Free Equilibria 

At this critical point, (7) is devoid of disease. That 
is, there is zero concentration of vibrio cholera 
population and there is no infected or hospitalised 
individual. Thus, 0   BHI , and the disease 
free equilibrium is, 

2 5 5 2 5
0 0 0

7 7 7

0 0 0 0
7

, , ,

0, 0, , 0.

a a a a aS V P
a a a

I H R B
a

M K
P

VM

/ / / ½   °°
¾/ °    
°¿

                           (8) 

2.3.2. Endemic Equilibrium 

At this phase of critical point, (7) contains the 
infected and bacterial population. Thus, 

0, 0, 0I H Bz z z .  
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2.3.3. Linear Stability of Disease Free 
Equilibrium 

The local stability of the disease-free equilibrium 
point is proven here using the following theorem. 
Theorem 1: The critical point corresponding to 
the disease-free state of (7) is asymptotically 
stable if the real parts of all roots of the 
characteristic (10) are negative. 
Proof: To prove this, consider the Jacobian 
matrix of (10) corresponding to (7) given by 
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Using row reduction, 0 � IJ O  we obtained 

POGO � � 21 , .         (11) 
And the reduced system yields 
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With the characteristics equation of (13) yielding  
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From (14), there is a consistent distribution of 
negative signs in the characteristic equation. 
Following Descartes' rule of signs, it is assured 
that the polynomial has only negative roots. 
Therefore, all eigenvalues are negative and the 
system is locally stable. Hence, the proof is 
complete. 
2.3.4. Basic Reproduction Number 0R  

The basic reproduction number measures 
transmission potential, with values above one 
indicating spread and below one indicating 
control. Mathematically, � �KRe U  where 𝜌 is 
the maximum absolute value of the eigenvalues 
of matrix 1� VxFK .  Now consider the 
transition matrices given by: 
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With spectral radius of: 

� � � �S
a

AKR h

3
0

1�
  

OEU .        (17) 

Substituting the value of 3a  in (17) at disease free 
value of :0SS       
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Table 2: Variables, parameters, and their 
corresponding values. 

Variables Value 
1m  9000 
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2m  3000 

3m  7000 

4m  5000 

5m  4000 

6m  1500 

7m  2000 
Parameters  
/      15.1854 

hE  0.0040963 

cE  0.2143 

A  10 dd A , 0.39 
V  0.5 
P  1/60 
H  0.01 

1J  0.00331423 

2J  0.1 

1d  0.09 

2d  0.05 

I  0.07 
K  0.7 
G  0.83 
T  10 

O  0.07 

W  0.1 
 

2.3.5. Sensitivity of reproductive number. 
Evaluate 0R , using the normalised sensitivity 

index 
e

eeS
�
.

�
.w

w�
 �

.
. The numerical values 

are presented in Table 3. 

Table 3: Sensitivity of model parameters on 0R  

Following the sensitivity results data presented 
on Table 2, negative parameters help control; 
positive ones require close monitoring. 
 
3. THE FRACTIONAL ORDER MODEL 

Fractional-order CF-derivative ]1,0(�D cholera 
system with memory effects in vaccination 
analyzed. The right-hand sides of the classical 
model (7) is of 1�time , therefore, the proposed 
fractional order model is of time D� .For 
dimensional consistency, all nonnegative 
parameters are raised to a fractional order power 
of ]1,0(�D and this leads to equation (19) to 
(25): 
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3.1. Existence and Uniqueness Analysis 

In this section, we apply the fixed-point theory 
approach to ensure the existence and uniqueness 
of the fractional order model. Thus, rewriting 
equation (19) to (25) in their functional form we 
have 
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Applying Definition 2, the integral operator can 
be applied on both sides of (25). 
Theorem 2: 
The Lipchitz criterion of contraction is satisfied 
by kernel 1K  this inequality hold; 

� � 10 �����d DDDDDD KIPEOE Ihc . 

Parameters Sensitivity indices 
/      1 

hE  1 

A  -0.6393442623 
V  -4.612127286 
P  -0.2739482871 

H  0.0006673950224 

1J  -0.00001988528456 

2J  -0.5999880686 

1d  -0.2999940343 

I  -0.9804546948 
K  -5.746319557 
G  -4.765864863 
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Taking the norm of the above equations and 
applying the Lipchitz condition 
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In general, 
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So that 
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This complete the proof. Thus, a unique and 
continuous solution exists for the system. 
 
3.2. Model solution using the LADM 

Adapting the generalised methodology in section 
2 to the fractional order mode,by definition, 
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Representing the model variables as infinite sum 
of their partial sequence, the nonlinear team: 
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Using the Adomian Polynomial given by: 
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(34) 
Evaluating (26) to (32) with (33) and (34). 
Subsequent utility of the initial conditions 
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� � � � ,0,0 65 mRmH   � � 70 mB   such that 
first approximation yields: 
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Evaluating at n=0 and the first approximate 
results are obtained as:  
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Following the same process, additional iterations 
are computed and the model solution to third 
approximation in this study is: 
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3.3. Convergence Analysis 

We infer to ref. [17] to demonstrate the 
convergence of solution. The iterative solution 
(36) is illustrated as 
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prove the convergence of ^ `nv , using the 
subsequent theorem. 
Theorem 3: 
Let 1B be a Banach Space and 11: %o%:  a 
contraction functions with constant 10 �� G , 
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completes the proof.  

4. RESULTS  

This section presents basic information about the 
analysis, performed using Maple 13 software. 
Due to limited data availability, compartment and 
parameter values were assumed. Table 2 
summarizes these variables, parameters, and their 
values. 

5. NUMERICAL SIMULATIONS  

 

  
Fig.1: Dynamic impact of high-risk population's 
adoption of protective measures on infected 
population. 

Fig.2: Dynamic impact of high-risk population's 
adoption of protective measures on  protected 
population. 

  
 
Fig. 3: Dynamics of susceptible people to 
adoptance rate of protective measures 

 
Fig. 4: Dynamics of protected people to 
adoptance rate of protective measures 
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Fig. 5: Dynamic response of susceptible people 
to the fractional order rate of eradication factors. 

 
Fig. 6: Dynamic response of vaccinated people 
to the fractional order rate of eradication factors 

 
Fig. 7: Dynamic response of protected people to 
the fractional order rate of eradication factors 
 

 
Fig. 8: Dynamic response of hospitalized people 
to the fractional order rate of eradication factors 
 

                                                                                                                                                                          
Fig. 9: Dynamic response of model variables to 
the fractional order rate of eradication factors,  

 
6. DISCUSSION 

This section discusses the study results. Fig. 1 
shows a significant decrease in the population of 
infected individuals as the adoption rate of 
preventive measures increases among susceptible 
individuals in high-risk regions. Conversely, Fig. 
2 demonstrates a notable increase in the 
population of protected individuals 
corresponding to higher rates of protective 
measures. Results shown in Figs 3 and 4 
demonstrate the dynamic response of the 
susceptible and protected populations to 
variations in the protection rate. Specifically, Fig. 
3 illustrates a significant decrease in the 
population of susceptible individuals, indicating 
heightened protection against the targeted threat. 
Conversely, Fig. 4 reveals a substantial increase 
in the population of protected individuals, 
demonstrating the effectiveness of the 
implemented protective measures in shielding the 
population from harm. 
Figs 5-9 present the significant effects of changes 
in the fractional order level of intervention rates 
on population variables. In Fig. 5, increasing the 
fractional order level of intervention rate, 
particularly in protective measures, leads to a 
higher level of awareness and knowledge about 
disease prevention among the population, thereby 
reducing the number of susceptible individuals 
and slowing down the spread of the disease. 
On the other hand, Fig. 6 reveals that the 
protected population increases as the fractional 
order level of interventions approaches the 
classical order. This implies that higher rates of 
awareness of protective measures such as 
education and vaccination can be applied to 
achieve herd immunity in the population. Fig. 7 
demonstrates that higher rates of adoption of 
protective measures and vaccination contribute to 
achieving herd immunity. Figs 8 show a drastic 
reduction in infected and hospitalized 
populations asD approaches 1, revealing that 
high rates of intervention strategies potentially 
lower the number of infectious individuals. 
Finally, Fig.9 shows that the recovered 
population is maximum at integer order, 
emphasizing the need for maximum 
implementation of educational awareness of 
protective measures and vaccination. The overall 
implication is that vaccination and education are 
crucial in combating cholera outbreaks. Higher 
vaccination rates and educational awareness 
reduce susceptibility, increase protection, and 
contribute to overall public health resilience 
against cholera. 
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7. CONCLUSION 

This study shows the main strengths of the 
proposed seven compartment deterministic 
model that efficiently draws the role of both, 
vaccination and education in cholera prevention 
to vulnerable riverine communities, and actual 
analysis proves that the proportion between the 
percentage of vaccinated people and level of 
protection of the population is direct and that the 
awareness level has an enormous influence on the 
process of diseases dynamics, where high 
awareness relates to fewer infections and elevated 
level of protection. Although its outcomes 
demonstrate the advantage of using fractional 
calculus to biological models, such limitations 
can be mentioned: the deterministic nature could 
not entirely model randomness of cholera 
outbreaks, that is based on the assumption of 
constant behavior patterns, that may be limited in 
application to certain demographic conditions 
and that could only be utilized in symbolic 
computation packages that may not be present or 
be very inefficient in large-scale or real-time 
applications. The results present potential 
application of a public health interventions 
framework, informing policymakers on how to 
target specific educational efforts and selectively 
vaccinate to achieve the most effective herd 
immunity, healthcare resource development in at-
risk populations, as well as emergency response 
planning, with future studies having the potential 
to expand this framework by incorporating 
stochastic modeling to more truly allow the 
randomness of cholera outbreaks to inform real-
world applications.  
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